smack_head_in_disappointment_150_wht_16653One of the traps for the inexperienced Improvement Science Practitioner is to believe that applying the science in the real world is as easy as it is in the safety of the training environment.

It isn’t.

The real world is messier and more complicated and it is easy to get lost in the fog of confusion and chaos.


So how do we avoid losing our footing, slipping into the toxic emotional swamp of organisational culture and giving ourselves an unpleasant dunking!

We use safety equipment … to protect ourselves and others from unintended harm.

The Improvement-by-Design framework is like a scaffold.  It is there to provide structure and safety.  The techniques and tools are like the harnesses, shackles, ropes, crampons, and pitons.  They give us flexibility and security.

But we need to know how to use them. We need to be competent as well as confident.

We do not want to tie ourselves up in knots … and we do not want to discover that we have not tied ourselves to something strong enough to support us if we slip. Which we will.


So we need to learn an practice the basics skills to the point that they are second nature.

We need to learn how to tie secure knots, quickly and reliably.

We need to learn how to plan an ascent … identifying the potential hazards and designing around them.

We need to learn how to assemble and check what we will need before we start … not too much and not too little.

We need to learn how to monitor out progress against our planned milestones and be ready to change the plan as we go …and even to abandon the attempt if necessary.


We would not try to climb a real mountain without the necessary training, planning, equipment and support … even though it might look easy.

And we do not try to climb an improvement mountain without the necessary training, planning, tools and support … even though it might look easy.

It is not as easy as it looks.

Dr_Bob_ThumbnailThere is a big bun-fight kicking off on the topic of 7-day working in the NHS.

The evidence is that there is a statistical association between mortality in hospital of emergency admissions and day of the week: and weekends are more dangerous.

There are fewer staff working at weekends in hospitals than during the week … and delays and avoidable errors increase … so risk of harm increases.

The evidence also shows that significantly fewer patients are discharged at weekends.


So the ‘obvious’ solution is to have more staff on duty at weekends … which will cost more money.


Simple, obvious, linear and wrong.  Our intuition has tricked us … again!


Let us unravel this Gordian Knot with a bit of flow science and a thought experiment.

1. The evidence shows that there are fewer discharges at weekends … and so demonstrates lack of discharge flow-capacity. A discharge process is not a single step, there are many things that must flow in sync for a discharge to happen … and if any one of them is missing or delayed then the discharge does not happen or is delayed.  The weakest link effect.

2. The evidence shows that the number of unplanned admissions varies rather less across the week; which makes sense because they are unplanned.

3. So add those two together and at weekends we see hospitals filling up with unplanned admissions – not because the sick ones are arriving faster – but because the well ones are leaving slower.

4. The effect of this is that at weekends the queue of people in beds gets bigger … and they need looking after … which requires people and time and money.

5. So the number of staffed beds in a hospital must be enough to hold the biggest queue – not the average or some fudged version of the average like a 95th percentile.

6. So a hospital running a 5-day model needs more beds because there will be more variation in bed use and we do not want to run out of beds and delay the admission of the newest and sickest patients. The ones at most risk.

7. People do not get sicker because there is better availability of healthcare services – but saying we need to add more unplanned care flow capacity at weekends implies that it does.  What is actually required is that the same amount of flow-resource that is currently available Mon-Fri is spread out Mon-Sun. The flow-capacity is designed to match the customer demand – not the convenience of the supplier.  And that means for all parts of the system required for unplanned patients to flow.  What, where and when. It costs the same.

8. Then what happens is that the variation in the maximum size of the queue of patients in the hospital will fall and empty beds will appear – as if by magic.  Empty beds that ensure there is always one for a new, sick, unplanned admission on any day of the week.

9. And empty beds that are never used … do not need to be staffed … so there is a quick way to reduce expensive agency staff costs.

So with a comprehensive 7-day flow-capacity model the system actually gets safer, less chaotic, higher quality and less expensive. All at the same time. Safety-Flow-Quality-Productivity.

by Julian Simcox & Terry Weight

Ben Goldacre has spent several years popularizing the idea that we all ought all to be more interested in science.

Every day he writes and tweets examples of “bad science”, and about getting politicians and civil servants to be more evidence-based; about how governmental interventions should be more thoroughly tested before being rolled-out to the hapless citizen; about how the development and testing of new drugs should be more transparent to ensure the public get drugs that actually make a difference rather than risk harm; and about bad statistics – the kind that “make clever people do stupid things”(8).

Like Ben we would like to point the public sector, in particular the healthcare sector and its professionals, toward practical ways of doing more of the good kind of science, but just what is GOOD science?

In collaboration with the Cabinet Office’s behaviour insights team, Ben has recently published a polemic (9) advocating evidence-based government policy. For us this too is commendable, yet there is a potentially grave error of omission in their paper which seems to fixate upon just a single method of research, and risks setting-up the unsuspecting healthcare professional for failure and disappointment – as Abraham Maslow once famously said

.. it is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail”(17)

We question the need for the new Test, Learn and Adapt (TLA) model he offers because the NHS already possesses such a model – one which in our experience is more complete and often simpler to follow – it is called the “Improvement Model”(15) – and via its P-D-S-A mnemonic (Plan-Do-Study-Act) embodies the scientific method.

Moreover there is a preexisting wealth of experience on how best to embed this thinking within organisations – from top-to-bottom and importantly from bottom-to-top; experience that has been accumulating for fully nine decades – and though originally established in industrial settings has long since spread to services.

We are this week publishing two papers, one longer and one shorter, in which we start by defining science, ruing the dismal way in which it is perennially conveyed to children and students, the majority of whom leave formal education without understanding the power of discovery or gaining any first hand experience of the scientific method.

View Shorter Version Abstract

We argue that if science were to be defined around discovery, and learning cycles, and built upon observation, measurement and the accumulation of evidence – then good science could vitally be viewed as a process rather than merely as an externalized entity. These things comprise the very essence of what Don Berwick refers to as Improvement Science (2) as embodied by the Institute of Healthcare Improvement (IHI) and in the NHS’s Model for Improvement.

We also aim to bring an evolutionary perspective to the whole idea of science, arguing that its time has been coming for five centuries, yet is only now more fully arriving. We suggest that in a world where many at school have been turned-off science, the propensity to be scientific in our daily lives – and at work – makes a vast difference to the way people think about outcomes and their achievement. This is especially so if those who take a perverse pride in saying they avoided science at school, or who freely admit they do not do numbers, can get switched on to it.

The NHS Model for Improvement has a pedigree originating with Walter Shewhart in the 1920’s, then being famously applied by Deming and Juran after WWII. Deming in particular encapsulates the scientific method in his P-D-C-A model (three decades later he revised it to P-D-S-A in order to emphasize that the Check stage must not be short-changed) – his pragmatic way of enabling a learning/improvement to evolve bottom-up in organisations.

After the 1980’s Dr Don Berwick , standing on these shoulders, then applied the same thinking to the world of healthcare – initially in his native America. Berwick’s approach is to encourage people to ask questions such as: What works? .. and How would we know? His method, is founded upon a culture of evidence-based learning, providing a local context for systemic improvement efforts. A new organisational culture, one rooted in the science of improvement, if properly nurtured, may then emerge.

Yet, such a culture may initially jar with the everyday life of a conventional organisation, and the individuals within it. One of several reasons, according to Yuval Harari (21), is that for hundreds of generations our species has evolved such that imagined reality has been lorded over objective reality. Only relatively recently in our evolution has the advance of science been leveling up this imbalance, and in our papers we argue that a method is now needed that enables these two realities to more easily coexist.

We suggest that a method that enables data-rich evidence-based storytelling – by those who most know about the context and intend growing their collective knowledge – will provide the basis for an approach whereby the two realities may do just that.

In people’s working lives, a vital enabler is the 3-paradigm “Accountability/Improvement/Research” measurement model (AIRmm), reflecting the three archetypal ways in which people observe and measure things. It was created by healthcare professionals (23) to help their colleagues and policy-makers to unravel a commonly prevailing confusion, and to help people make better sense of the different approaches they may adopt when needing to evidence what they’re doing – depending on the specific purpose. An amended version of this model is already widely quoted inside the NHS, though this is not to imply that it is yet as widely understood or applied as it needs to be.

goodscience_AIR_model

This 3-paradigm A-I-R measurement model underpins the way that science can be applied by, and has practical appeal for, the stretched healthcare professional, managerial leader, civil servant.

Indeed for anyone who intuitively suspects there has to be a better way to combine goals that currently feel disconnected or even in conflict: empowerment and accountability; safety and productivity; assurance and improvement; compliance and change; extrinsic and intrinsic motivation; evidence and action; facts and ideas; logic and values; etc.

Indeed for anyone who is searching for ways to unify their actions with the system-based implementation of those actions as systemic interventions. Though widely quoted in other guises, we are returning to the original model (23) because we feel it better connects to the primary aim of supporting healthcare professionals make best sense of their measurement options.

In particular the model makes it immediately plain that a way out of the apparent Research/Accountability dichotomy is readily available to anyone willing to “Learn, master and apply the modern methods of quality control, quality improvement and quality planning” – the recommendation made for all staff in the Berwick Report (3).

In many organisations, and not just in healthcare, the column 1 paradigm is the only game in town. Column 3 may feel attractive as a way-out, but it also feels inaccessible unless there is a graduate in statistician on hand. Moreover, the mainstay of the Column 3 worldview: the Randomized Controlled Trial (RCT) can feel altogether overblown and lacking in immediacy. It can feel like reaching for a spanner and finding a lump hammer in your hand – as Berwick says “Fans of traditional research methods view RCTs as the gold standard, but RCTs do not work well in many healthcare contexts” (2).

Like us, Ben is frustrated by the ways that healthcare organisations conduct themselves – not just the drug companies that commercialize science and publish only the studies likely to enhance sales, but governments too who commonly implement politically expedient policies only to then have to subsequently invent evidence to support them.

Policy-based evidence rather than evidence-based policy.

Ben’s recommended Column 3-style T-L-A approach is often more likely to make day-to-day sense to people and teams on the ground if complemented by Column 2-style improvement science.
One reason why Improvement Science can sometimes fail to dent established cultures is that it gets corralled by organisational “experts” – some of whom then use what little knowledge they have gathered merely to make themselves indispensable, not realising the extent to which everyone else as a consequence gets dis-empowered.

In our papers we take the opportunity to outline the philosophical underpinnings, and to do this we have borrowed the 7-point framework from a recent paper by Perla et al (35) who suggest that Improvement Science:

1. Is grounded in testing and learning cycles – the aim is collective knowledge and understanding about cause & effect over time. Some scientific method is needed, together with a way to make the necessary inquiry a collaborative one. Shewhart realised this and so invented the concept “continual improvement”.

2. Embraces a combination of psychology and logic – systemic learning requires that we balance myth and received wisdom with logic and the conclusions we derive from rational inquiry. This balance is approximated by the Sensing-Intuiting continuum in the Jungian-based MBTI model (12) reminding us that constructing a valid story requires bandwidth.

3. Has a philosophical foundation of conceptualistic pragmatism (16) – it cannot be expected that two scientists when observing, experiencing, or experimenting will make the same theory-neutral observations about the same event – even if there is prior agreement about methods of inference and interpretation. The normative nature of reality therefore has to be accommodated. Whereas positivism ultimately reduces the relation between meaning and experience to a matter of logical form, pragmatism allows us to ground meaning in conceived experience.

4. Employs Shewhart’s “theory of cause systems” – Walter Shewhart created the Control Chart for tuning-in to systemic behaviour that would otherwise remain unnoticed. It is a diagnostic tool, but by flagging potential trouble also aids real time prognosis. It might have been called a “self-control chart” for he was especially interested in supporting people working in and on their system being more considered (less reactive) when taking action to enhance it without over-reacting – avoiding what Deming later referred to as “Tampering” (4).

5. Requires the use of Operational Definitions – Deming warned that some of the most important aspects of a system cannot be expressed numerically, and those that can require care because “there is no true value of anything measured or observed” (5). When it comes to metric selection therefore it is essential to understand the measurement process itself, as well as the “operational definition” that each metric depends upon – the aim being to reduce ambiguity to zero.

6. Considers the contexts of both justification and discovery – Science can be defined as a process of discovery – testing and learning cycles built upon observation, measurement and accumulating evidence or experience – shared for example via a Flow Chart or a Gantt chart in order to justify a belief in the truth of an assertion. To be worthy of the term “science” therefore, a method or procedure is needed that is characterised by collaborative inquiry.

7. Is informed by Systems Theory – Systems Theory is the study of systems, any system: as small as a quark or as large as the universe. It aims to uncover archetypal behaviours and the principles by which systems hang together – behaviours that can be applied across all disciplines and all fields of research. There are several types of systems thinking, but Jay Forrester’s “System Dynamics” has most pertinence to Improvement Science because of its focus on flows and relationships – recognising that the behaviour of the whole may not be explained by the behaviour of the parts.

In the papers, we say more about this philosophical framing, and we also refer to the four elements in Deming’s “System of Profound Knowledge”(5). We especially want to underscore that the overall aim of any scientific method we employ is contextualised knowledge – which is all the more powerful if continually generated in context-specific experimental cycles. Deming showed that good science requires a theory of knowledge based upon ever-better questions and hypotheses. We two aim now to develop methods for building knowledge-full narratives that can work well in healthcare settings.

We wholeheartedly agree with Ben that for the public sector – not just in healthcare – policy-making needs to become more evidence-based.

In a poignant blog from the Health Foundation’s (HF) Richard Taunt (24), he recently describes attending two recent conferences on the same day. At the first one, policymakers from 25 countries had assembled to discuss how national policy can best enhance the quality of health care. When collectively asked which policies they would retain and repeat, their list included: use of data, building quality improvement capability, ensuring senior management are aware of improvement approaches, and supporting and spreading innovations.

In a different part of London, UK health politicians happened also to be debating Health and Care in order to establish the policy areas they would focus on if forming the next government. This second discussion brought out a completely different set of areas: the role of competition, workforce numbers, funding, and devolution of commissioning. These two discussions were supposedly about the same topic, but a Venn diagram would have contained next to no overlap.

Clare Allcock, also from the HF, then blogged to comment that “in England, we may think we are fairly advanced in terms of policy levers, but (unlike, for example in Scotland or the USA) we don’t even have a strategy for implementing health system quality.” She points in particular to Denmark who recently have announced they are phasing out their hospital accreditation scheme in favour of an approach strongly focused around quality improvement methodology and person-centred care. The Danes are in effect taking the 3-paradigm model and creating space for Column 2: improvement thinking.

The UK needs to take a leaf out of their book, for without changing fundamentally the way the NHS (and the public sector as a whole) thinks about accountability, any attempt to make column 2 the dominant paradigm is destined to be still born.

It is worth noting that in large part the AIRmm Column 2 paradigm was actually central to the 2012 White Paper’s values, and with it the subsequent Outcomes Framework consultation – both of which repeatedly used the phrase “bottom-up” to refer to how the new system of accountability would need to work, but somehow this seems to have become lost in legislative procedures that history will come to regard as having been overly ambitious. The need for a new paradigm of accountability however remains – and without it health workers and clinicians – and the managers who support them – will continue to view metrics more as something intrusive than as something that can support them in delivering enhancements in sustained outcomes. In our view the Stevens’ Five Year Forward View makes this new kind of accountability an imperative.

“Society, in general, and leaders and opinion formers, in particular, (including national and local media, national and local politicians of all parties, and commentators) have a crucial role to play in shaping a positive culture that, building on these strengths, can realise the full potential of the NHS.
When people find themselves working in a culture that avoids a predisposition to blame, eschews naïeve or mechanistic targets, and appreciates the pressures that can accumulate under resource constraints, they can avoid the fear, opacity, and denial that will almost inevitably lead to harm.”
Berwick Report (3)

Changing cultures means changing our habits – it starts with us. It won’t be easy because people default to the familiar, to more of the same. Hospitals are easier to build than relationships; operations are easier to measure than knowledge, skills and confidence; and prescribing is easier than enabling. The two of us do not of course possess a monopoly on all possible solutions, but our experience tells us that now is the time for: evidence-rich storytelling by front line teams; by pharmaceutical development teams; by patients and carers conversing jointly with their physicians.

We know that measurement is not a magic bullet, but what frightens us is that the majority of people seem content to avoid it altogether. As Oliver Moody recently noted in The Times ..

Call it innumeracy, magical thinking or intrinsic mental laziness, but even intelligent members of the public struggle, through no fault of their own, to deal with statistics and probability. This is a problem. People put inordinate amounts of trust in politicians, chief executives, football managers and pundits whose judgment is often little better than that of a psychic octopus.     Short of making all schoolchildren study applied mathematics to A level, the only thing scientists can do about this is stick to their results and tell more persuasive stories about them.

Too often, Disraeli’s infamous words: “Lies, damned lies, and statistics” are used as the refuge of busy professionals looking for an excuse to avoid numbers.

If Improvement Science is to become a shared language, Berwick’s recommendation that all NHS staff “Learn, master and apply the modern methods of quality control, quality improvement and quality planning” has to be taken seriously.

As a first step we recommend enabling teams to access good data in as near to real time as possible, data that indicates the impact that one’s intervention is having – this alone can prompt a dramatic shift in the type of conversation that people working in and on their system may have. Often this can be initiated simply by converting existing KPI data into System Behaviour Chart form which, using a tool like BaseLine® takes only a few mouse clicks.

In our longer paper we offer three examples of Improvement Science in action – combining to illustrate how data may be used to evidence both sustained systemic enhancement, and to generate engagement by the people most directly connected to what in real time is systemically occurring.

1. A surgical team using existing knowledge established by column 3-type research as a platform for column 2-type analytic study – to radically reduce post-operative surgical site infection (SSI).

2. 25 GP practices are required to collect data via the Friends & Family Test (FFT) and decide to experiment with being more than merely compliant. In two practices they collectively pilot a system run by their PPG (patient participation group) to study the FFT score – patient by patient – as they arrive each day. They use IS principles to separate signal from noise in a way that prompts the most useful response to the feedback in near to real time. Separately they summarise all the comments as a whole and feed their analysis into the bi-monthly PPG meeting. The aim is to address both “special cause” feedback and “common cause” feedback in a way that, in what most feel is an over-loaded system, can prompt sensibly prioritised improvement activity.

3. A patient is diagnosed with NAFLD and receives advice from their doctor to get more exercise e.g. by walking more. The patient uses the principles of IS to monitor what happens – using the data not just to show how they are complying with their doctor’s advice, but to understand what drives their personal mind/body system. The patient hopes that this knowledge can lead them to better decision-making and sustained motivation.

The landscape of NHS improvement and innovation support is fragmented, cluttered, and currently pretty confusing. Since May 2013 Academic Health Science Networks (AHSNs) funded by NHS England (NHSE) have been created with the aim of bringing together health services, and academic and industry members. Their stated purpose is to improve patient outcomes and generate economic benefits for the UK by promoting and encouraging the adoption of innovation in healthcare. They have a 5 year remit and have spent the first 2 years establishing their structures and recruiting, it is not yet clear if they will be able to deliver what’s really needed.

Patient Safety Collaboratives linked with AHSN areas have also been established to improve the safety of patients and ensure continual patient safety learning. The programme, coordinated by NHSE and NHSIQ will provide safety improvements across a range of healthcare settings by tackling the leading causes of avoidable harm to patients. The intention is to empower local patients and healthcare staff to work together to identify safety priorities and develop solutions – implemented and tested within local healthcare organisations, then later shared nationally.

We hope our papers will significantly influence the discussions about how improvement and innovation can assist with these initiatives. In the shorter paper to echo Deming, we even include our own 14 points for how healthcare organisations need to evolve. We will know that we have succeeded if the papers are widely read; if we enlist activists like Ben to the definition of science embodied by Improvement Science; and if we see a tidal wave of improvement science methods being applied across the NHS?

As patient volunteers, we each intend to find ways of contributing in any way that appears genuinely helpful. It is our hope that Improvement Science enables the cultural transformation we have envisioned in our papers and with our case studies. This is what we feel most equipped to help with. When in your sixties it easy to feel that time is short, but maybe people of every age should feel this way? In the words of Francis Bacon, the father of the scientific method.

goodscience_francisbaconquote

Download Long Version

References

goodscience_refs

custom_life_balance_13780A common challenge is the need to balance the twin constraints of safety and cost.

Very often we see that making a system safer will increase its cost; and cutting costs leads to increased risk of harm.

So when budgets are limited and allowing harm to happen is a career limiting event then we feel stuck between a Rock and a Hard Place.


One root cause of this problem is the incorrect belief that ‘utilisation of capacity’ is a measure of ‘efficiency’ and the association of high efficiency with low cost. This then leads to another invalid belief that if we drive up utilisation then we will get a lower cost solution.

Let us first disprove the invalid belief with a simple thought experiment.

Suppose I have a surgical department with 100 beds and I want to run it at 100% utilisation but I also need to be able to admit urgent surgical patients without delay.  How would I do that?

Simple … just delay the discharge of all the patients who are ready for discharge until a new admission needs a bed … then do a ‘hot swap’.

This is a tried and tested tactic that surgeons have used for decades to ensure their wards are full with their patients and to prevent ‘outliers’ spilling over from other wards. It is called bed blocking.

The effect is that the length of stay of patients is artifically expanded which means that more bed days are used to achieve the same outcome. So it is a less efficient design.

It also disproves the belief that utilisation is a measure of efficiency … in the example above utilisation went up while efficiency went down and without also causing a safety problem.


So what is the problem here?

The problem is that we are confusing two different sorts of ‘capacity’ … space-capacity and flow-capacity.

And when we do that we invent and implement plausible sounding plans that are doomed to fail as soon as they hit the reality test.

So why do we continue to confuse these different sorts of capacity?

Because (a) we do not know any better and (b) we copy others who do not know any better and (c) we collectively fail to learn from the observable fact that our plausible plans do not seem to work in practice.

Is there a way out of this blind-leading-the-blind mess?

For sure there is.

But it requires a willingness to unlearn our invalid assumptions and replace them with valid (i.e. tested) ones.  And it is the unlearning that is the most uncomfortable bit.

Lack of humility is what prevents us from unlearning … our egos get in the way … they quite literally blind us to what is plain to see.

We also fear loss of face … and so we avoid threats to our reputations … we simply ignore the evidence of our ineptitude.  The problem of ‘hubris’ that Atul Gawande eloquently pointed out in the 2014 Reith Lectures.

And by so doing we achieve the very outcome we are so desperately trying to avoid … we fail.

Which is sad really because with just a pinch of humility we can so easily succeed.

Dr_Bob_ThumbnailA recurring theme this week has been the concept of ‘quality’.

And it became quickly apparent that a clear definition of quality is often elusive.

Which seems to have led to a belief that quality is difficult to measure because it is subjective and has no precise definition.

The science of quality improvement is nearly 100 years old … and it was shown a long time ago, in 1924 in fact, that it is rather easy to measure quality – objectively and scientifically.

The objective measure of quality is called “yield”.

To measure yield we simply ask all our customers this question:

Did your experience meet your expectation?” 

If the answer is ‘Yes’ then we count this as OK; if it is ‘No’ then we count it as Not OK.

Yield is the ratio of the OKs divided by the number of customers who answered.


But this tried-and-tested way of measuring quality has a design flaw:

Where does a customer get their expectation from?

Because if a customer has an unrealistically high expectation then whatever we do will be perceived by them as Not OK.

So to consistently deliver a high quality service (i.e. high yield) we need to be able to influence both the customer experience and the customer expectation.


If we set our sights on a worthwhile and realistic expectation and we broadcast that to our customers, then we also need a way of avoiding their disappointment … that our objective quality outcome audit may reveal.

One way to defuse disappointment is to set a low enough expectation … which is, sadly, the approach adopted by naysayers,  complainers, cynics and doom-mongers. The inept.

That is not the path to either improvement or to excellence. It is the path to apathy.

A better approach is to set ourselves some internal standards of expectation and to check at each step if our work meets our own standard … and if it fails then we know we need have some more work to do.

This commonly used approach to maintaining quality is called a check-and-correct design.

So let us explore the ramifications of this check-and-correct approach to quality.


Suppose the quality of the product or service that we deliver is influenced by many apparently random factors. And when we actually measure our yield we discover that the chance of getting a right-first-time outcome is about 50%.  This amounts to little more than a quality lottery and we could simulate that ‘random’ process by tossing a coin.

So to set a realistic expectation for future customers there are two further questions we need to answer:
1. How long can an typical customer expect to wait for our product or service?
2. How much can an typical customer expect to pay for our product or service?

It is not immediately and intuitively obvious what the answers to these questions are … so we need to perform an experiment to find out.

Suppose we have five customers who require our product or service … we could represent them as Post It Notes; and suppose we have a clock … we could measure how long the process is taking; and suppose we have our coin … we can simulate the yield of the step; … and suppose we do not start the lead time clock until we start the work for each customer.

We now have the necessary and sufficient components to assemble a simple simulation model of our system … a model that will give us realistic answers to our questions.

So let us see what happens … just click the ‘Start Game’ button.


It is worth running this exercise about a dozen times and recording the data for each run … then plotting the results on a time-series chart.

The data to plot is the make-time (which is the time displayed on the top left) and the cost (which is display top middle).

The make-time is the time from starting the first game to completing the last task.

The cost is the number of coin tosses we needed to do to deliver all work to the required standard.

And here are the charts from my dozen runs (yours will be different).

PostItNote_MakeTimeChart

PostItNote_CostChart

The variation from run to run is obvious; as is the correlation between a make-time and a high cost.

The charts also answer our two questions … a make time up to 90 would not be exceptional and an average cost of 10 implies that is the minimum price we need to charge in order to stay in business.

Our customers are waiting while we check-and-correct our own errors and we are expecting them to pay for the extra work!

In the NHS we have a name for this low-quality high-cost design: Payment By Results.


The charts also show us what is possible … a make time of 20 and a cost of 5.

That happened when, purely by chance, we tossed five heads in a row in the Quality Lottery.

So with this insight we could consider how we might increase the probability of ‘throwing a head’ i.e. doing the work right-first-time … because we can see from our charts what would happen.

The improved quality and cost of changing ourselves and our system to remove the root causes of our errors.

Quality Improvement-by-Design.

That something worth learning how to do.

And can we honestly justify not doing it?

It was the time for Bob and Leslie’s regular coaching session. Dr_Bob_ThumbnailBob was already on line when Leslie dialed in to the teleconference.

<Leslie> Hi Bob, sorry I am a bit late.

<Bob> No problem Leslie. What aspect of improvement science shall we explore today?

<Leslie> Well, I’ve been working through the Safety-Flow-Quality-Productivity cycle in my project and everything is going really well.  The team are really starting to put the bits of the jigsaw together and can see how the synergy works.

<Bob> Excellent. And I assume they can see the sources of antagonism too.

<Leslie> Yes, indeed! I am now up to the point of considering productivity and I know it was introduced at the end of the Foundation course but only very briefly.

<Bob> Yes,  productivity was described as a system metric. A ratio of a steam metric and a stage metric … what we get out of the streams divided by what we put into the stages.  That is a very generic definition.

<Leslie> Yes, and that I think is my problem. It is too generic and I get it confused with concepts like efficiency.  Are they the same thing?

<Bob> A very good question and the short answer is “No”, but we need to explore that in more depth.  Many people confuse efficiency and productivity and I believe that is because we learn the meaning of words from the context that we see them used in. If  others use the words imprecisely then it generates discussion, antagonism and confusion and we are left with the impression of that it is a ‘difficult’ subject.  The reality is that it is not difficult when we use the words in a valid way.

<Leslie> OK. That reassures me a bit … so what is the definition of efficiency?

<Bob> Efficiency is a stream metric – it is the ratio of the minimum cost of the resources required to complete one task divided by the actual cost of the resources used to complete one task.

<Leslie> Um.  OK … so how does time come into that?

<Bob> Cost is a generic concept … it can refer to time, money and lots of other things.  If we stick to time and money then we know that if we have to employ ‘people’ then time will cost money because people need money to buy essential stuff that the need for survival. Water, food, clothes, shelter and so on.

<Leslie> So we could use efficiency in terms of resource-time required to complete a task?

<Bob> Yes. That is a very useful way of looking at it.

<Leslie> So how is productivity different? Completed tasks out divided by cash in to pay for resource time would be a productivity metric. It looks the same.

<Bob> Does it?  The definition of efficiency is possible cost divided by actual cost. It is not the as our definition of system productivity.

<Leslie> Ah yes, I see. So do others define productivity the same way?

<Bob> Try looking it up on Wikipedia …

<Leslie> OK … here we go …

Productivity is an average measure of the efficiency of production. It can be expressed as the ratio of output to inputs used in the production process, i.e. output per unit of input”.

Now that is really confusing!  It looks like efficiency and productivity are the same. Let me see what the Wikipedia definition of efficiency is …

“Efficiency is the (often measurable) ability to avoid wasting materials, energy, efforts, money, and time in doing something or in producing a desired result”.

But that is closer to your definition of efficiency – the actual cost is the minimum cost plus the cost of waste.

<Bob> Yes.  I think you are starting to see where the confusion arises.  And this is because there is a critical piece of the jigsaw missing.

<Leslie> Oh …. and what is that?

<Bob> Worth.

<Leslie> Eh?

<Bob> Efficiency has nothing to do with whether the output of the stream has any worth.  I can produce a worthless product with low waste … in other words very efficiently.  And what if we have the situation where the output of my process is actually harmful.  The more efficiently I use my resources the more harm I will cause from a fixed amount of resource … and in that situation it is actually safer to have a very inefficient process!

<Leslie> Wow!  That really hits the nail on the head … and the implications are … profound.  Efficiency is onbective and relates only to flow … and between flow and productivity we have to cross the Safety-Quality line. Productivity also includes the subjective concept of worth or value. That all makes complete sense now. A productive system is a subjectively and objectively win-win-win design.

<Bob> Yup.  Get the safety. flow and quality perspectives of the design in synergy and productivity will sky-rocket. It is called a Fit-4-Purpose design.

stick_figure_balance_mind_heart_150_wht_9344Improvement implies learning.  And to learn we need feedback from reality because without it we will continue to believe our own rhetoric.

So reality feedback requires both sensation and consideration.

There are many things we might sense, measure and study … so we need to be selective … we need to choose those things that will help us to make the wise decisions.


Wise decisions lead to effective actions which lead to intended outcomes.


Many measures generate objective data that we can plot and share as time-series charts.  Pictures that tell an evolving story.

There are some measures that matter – our intended outcomes for example. Our safety, flow, quality and productivity charts.

There are some measures that do not matter – the measures of compliance for example – the back-covering blame-avoiding management-by-fear bureaucracy.


And there are some things that matter but are hard to measure … objectively at least.

We can sense them subjectively though.  We can feel them. If we choose to.

And to do that we only need to go to where the people are and the action happens and just watch, listen, feel and learn.  We do not need to do or say anything else.

And it is amazing what we learn in a very short period of time. If we choose to.


If we enter a place where a team is working well we will see smiles and hear laughs. It feels magical.  They will be busy and focused and they will show synergism. The team will be efficient, effective and productive.

If we enter place where is team is not working well we will see grimaces and hear gripes. It feels miserable. They will be busy and focused but they will display antagonism. The team will be inefficient, ineffective and unproductive.


So what makes the difference between magical and miserable?

The difference is the assumptions, attitudes, prejudices, beliefs and behaviours of those that they report to. Their leaders and managers.

If the culture is management-by-fear (a.k.a bullying) then the outcome is unproductive and miserable.

If the culture is management-by-fearlessness (a.k.a. inspiring) then the outcome is productive and magical.

It really is that simple.

smack_head_in_disappointment_150_wht_16653Many organisations proclaim that their mission is to achieve excellence but then proceed to deliver mediocre performance.

Why is this?

It is certainly not from lack of purpose, passion or people.

So the flaw must lie somewhere in the process.


The clue lies in how we measure performance … and to see the collective mindset behind the design of the performance measurement system we just need to examine the key performance indicators or KPIs.

Do they measure failure or success?


Let us look at some from the NHS …. hospital mortality, hospital acquired infections, never events, 4-hour A&E breaches, cancer wait breaches, 18 week breaches, and so on.

In every case the metric reported is a failure metric. Not a success metric.

And the focus of action is getting away from failure.

Damage mitigation, damage limitation and damage compensation.


So we have the answer to our question: we know we are doing a good job when we are not failing.

But are we?

When we are not failing we are not doing a bad job … is that the same as doing a good job?

Q: Does excellence  = not excrement?

A: No. There is something between these extremes.

The succeed-or-fail dichotomy is a distorting simplification created by applying an arbitrary threshold to a continuous measure of performance.


And how, specifically, have we designed our current system to avoid failure?

Usually by imposing an arbitrary target connected to a punitive reaction to failure. Management by fear.

This generates punishment-avoidance and back-covering behaviour which is manifest as a lot of repeated checking and correcting of the inevitable errors that we find.  A lot of extra work that requires extra time and that requires extra money.

So while an arbitrary-target-driven-check-and-correct design may avoid failing on safety, the additional cost may cause us to then fail on financial viability.

Out of the frying pan and into the fire.

No wonder Governance and Finance come into conflict!

And if we do manage to pull off a uneasy compromise … then what level of quality are we achieving?


Studies show that if take a random sample of 100 people from the pool of ‘disappointed by their experience’ and we ask if they are prepared to complain then only 5% will do so.

So if we use complaints as our improvement feedback loop and we react to that and make changes that eliminate these complaints then what do we get? Excellence?

Nope.

We get what we designed … just good enough to avoid the 5% of complaints but not the 95% of disappointment.

We get mediocrity.


And what do we do then?

We start measuring ‘customer satisfaction’ … which is actually asking the question ‘did your experience meet your expectation?’

And if we find that satisfaction scores are disappointingly low then how do we improve them?

We have two choices: improve the experience or reduce the expectation.

But as we are very busy doing the necessary checking-and-correcting then our path of least resistance to greater satisfaction is … to lower expectations.

And we do that by donning the black hat of the pessimist and we lay out the the risks and dangers.

And by doing that we generate anxiety and fear.  Which was not the intended outcome.


Our mission statement proclaims ‘trusted to achieve excellence’ not ‘designed to deliver mediocrity’.

But mediocrity is what the evidence says we are delivering. Just good enough to avoid a smack from the Regulators.

And if we are honest with ourselves then we are forced to conclude that:

A design that uses failure metrics as the primary feedback loop can achieve no better than mediocrity.


So if we choose  to achieve excellence then we need a better feedback design.

We need a design that uses success metrics as the primary feedback loop and we use failure metrics only in safety critical contexts.

And the ideal people to specify the success metrics are those who feel the benefit directly and immediately … the patients who receive care and the staff who give it.

Ask a patient what they want and they do not say “To be treated in less than 18 weeks”.  In fact I have yet to meet a patient who has even heard of the 18-week target!

A patient will say ‘I want to know what is wrong, what can be done, when it can be done, who will do it, what do I need to do, and what can I expect to be the outcome’.

Do we measure any of that?

Do we measure accuracy of diagnosis? Do we measure use of best evidenced practice? Do we know the possible delivery time (not the actual)? Do we inform patients of what they can expect to happen? Do we know what they can expect to happen? Do we measure outcome for every patient? Do we feed that back continuously and learn from it?

Nope.


So …. if we choose and commit to delivering excellence then we will need to start measuring-4-success and feeding what we see back to those who deliver the care.

Warts and all.

So that we know when we are doing a good job, and we know where to focus further improvement effort.

And if we abdicate that commitment and choose to deliver mediocrity-by-default then we are the engineers of our own chaos and despair.

We have the choice.

We just need to make it.

beehive_bees_150_wht_12723There is a condition called SFQPosis which is an infection that is transmitted by a vector called an ISP.

The primary symptom of SFQPosis is sudden clarity of vision and a new understanding of how safety, flow, quality and productivity improvements can happen at the same time …

… when they are seen as partners on the same journey.


There are two sorts of ISP … Solitary and Social.

Solitary ISPs infect one person at a time … often without them knowing.  And there is often a long lag time between the infection and the appearance of symptoms. Sometimes years – and often triggered by an apparently unconnected event.

In contrast the Social ISPs will tend to congregate together and spend their time foraging for improvement pollen and nectar and bringing it back to their ‘hive’ to convert into delicious ‘improvement honey’ which once tasted is never forgotten.


It appears that Jeremy Hunt, the Secretary of State for Health, has recently been bitten by an ISP and is now exhibiting the classic symptoms of SFQPosis.

Here is the video of Jeremy describing his symptoms at the recent NHS Confederation Conference. The talk starts at about 4 minutes.

His account suggests that he was bitten while visiting the Virginia Mason Hospital in the USA and on return home then discovered some Improvement hives in the UK … and some of the Solitary ISPs that live in England.

Warwick and Sheffield NHS Trusts are buzzing with ISPs … and the original ISP that infected them was one Kate Silvester.

The repeated message in Jeremy’s speech is that improved safety, quality and productivity can happen at the same time and are within our gift to change – and the essence of achieving that is to focus on flow.

SFQPThe sequence is safety first (eliminate the causes of avoidable harm), then flow second (eliminate the causes of avoidable chaos), then quality (measure both expectation and experience) and then productivity will soar.

And everyone will  benefit.

This is not a zero-sum win-lose game.


So listen for the buzz of the ISPs …. follow it and ask them to show you how … ask them to innoculate you with SFQPosis.


And here is a recent video of Dr Steve Allder, a consultant neurologist and another ISP that Kate infected with SFQPosis a few years ago.  Steve is describing his own experience of learning how to do Improvement-by-Design.

chained_to_big_weight_ball_anim_10331One of the traps for the less experienced improvement scientist is to take on a project that is too ambitious, too early.

The success with a “small” project will attract the attention of those with an eye on a bigger prize and it is easy to be wooed by the Siren call to sail closer to their Rocks.

This is a significant danger and a warning flag needs to be waved.


 

Organisations can only take on these bigger challenges after they have developed enough improvement capability themselves … and that takes time and effort.  It is not a quick fix.

And it makes no difference how much money is thrown at the problem.  The requirement is for the leaders to learn how to do it first and that does not take long to do … but it does require some engagement and effort.

And this is difficult for busy people to do …but it is not impossible.


The questions that need to be asked repeatedly are:

1. Is this important enough to dedicate some time to?  If not then do not start.

2. What can I do in the time I can dedicate to this? Delegation is abdication when it comes to improvement.

Those who take on too big a project too early will find it is like being chained to a massive weight … and it gets heavier over time as others add their problems to your heap in the belief that delegating a problem is the same as solving it. It isn’t.


 

So if your inner voice says “This feels too big for me” then listen to it and ask it what specifically is creating that feeling … work backwards from the feeling.  And only after you have identified the root causes can you make a rational decision.

Then make the decision and stick to it … explaining your reasons.

 

knee_jerk_reflexA commonly used technique for continuous improvement is the Plan-Do-Study-Act or PDSA cycle.

This is a derivative of the PDCA cycle first described by Walter Shewhart in the 1930’s … where C is Check.

The problem with PDSA is that improvement does not start with a plan, it starts with some form of study … so SAPD would be a better order.


IHI_MFITo illustrate this point if we look at the IHI Model for Improvement … the first step is a pair of questions related to purpose “What are we trying to accomplish?” and “How will we know a change is an improvement?

With these questions we are stepping back and studying our shared perspective of our desired future.

It is a conscious and deliberate act.

We are examining our mental models … studying them … and comparing them.  We have not reached a diagnosis or a decision yet, so we cannot plan or do yet.

The third question is a combination of diagnosis and design … we need to understand our current state in order to design changes that will take up to our improved future state.

We cannot plan what to do or how to do it until we have decided and agreed what the future design will look like, and tested that our proposed future design is fit-4-purpose.


So improvement by discovery or by design does not start with plan, it starts with study.


And another word for study is ‘sense’ which may be a better one … because study implies a deliberate, conscious, often slow process … while sense is not so restrictive.

Very often our actions are not the result of a deliberative process … they are automatic and reflex. We do not think about them. They just sort of happen.

The image of the knee-jerk reflex illustrates the point.

In fact we have little conscious control over these automatic motor reflexes which respond much more quickly than our conscious thinking process can.  We are aware of the knee jerk after it has happened, not before, so we may be fooled into thinking that we ‘Do’ without a ‘Plan’.  But when we look in more detail we can see the sensory input and the hard-wired ‘plan’ that links to to motor output.  Study-Plan-Do.


The same is true for many other actions – our unconscious mind senses, processes, decides, plans and acts long before we are consciously aware … and often the only clue we have is a brief flash of emotion … and usually not even that.  Our behaviour is largely habitual.


And even in situations when we need to make choices the sense-recognise-act process is fast … such as when a patient suddenly becomes very ill … we switch into the Resuscitate mode which is a pre-planned sequence of steps that is guided by what are sensing … but it is not made up on the spot. There is no committee. No meetings. We just do what we have learned and practiced how to do … because it was designed to.   It still starts with Study … it is just that the Study phase is very short … we just need enough information to trigger the pre-prepared plan. ABC – Airway … Breathing … Circulation. No discussion. No debate.


So, improvement starts with Study … and depending on what we sense what happens next will vary … and it will involve some form of decision and plan.

1. Unconscious, hard-wired, knee jerk reflex.
2. Unconscious, learned, habitual behaviour.
3. Conscious, pre-planned, steered response.
4. Conscious, deliberation-diagnosis-design then delivery.

The difference is just the context and the timing.   They are all Study-Plan-Do.

 And the Plan may be to Do Nothing …. the Deliberate Act of Omission.


And when we go-and-see and study the external reality we sometimes get a surprise … what we see is not what we expect. We feel a sense of confusion. And before we can plan we need to adjust our mental model so that it better matches reality. We need to establish clarity.  And in this situation we are doing Study-Adjust-Plan-Do …. S(A)PD.

missing_custom_puzzle_completionSystems are made up of inter-dependent parts. And each part is a smaller system made up of inter-dependent parts. And so on.

But there is a limit … eventually we reach a size where we only have a small number of independent parts … and that is called a micro-system.

It is part of a meso-system which in turn is part of a macro-system.


And it appears that in human systems the manageable size of a micro-system is about seven people – enough to sit around a table and work together on a problem.


So the engine of organisational improvement is many micro-systems of about seven people who are able to solve the problems that fall within their collective circles of control.

And that means the vast majority of problems are solvable at the micro-system level.

In fact, without this foundation level of competent and collaborative micro-teams, the meso-systems and the macro-systems cannot get a grip on the slippery problem of systemic change for the better.


The macro-system is also critical to success because it has the strategic view and it sets the vision and values to which every other part of the system aligns.  A dysfunctional macro-system sends cracks down through the whole organisation … fragmenting it into antagonistic, competiting silos.


The meso-system level is equally critical to success because it translates the strategy into tactics and creates the context for the multitude of micro-systems to engage.

The meso-system is the nervous system of the organisation … the informal communication network that feeds data and decisions around.

And if the meso-system is dysfunctional then the organisation can see, feel and move … but it is uncoordinated, chaotic, inefficient, ineffective and largely unproductive.


So the three levels are different, essential and inter-dependent.

The long term viability of a complex adaptive system is the emergent effect of a system design that is effective and efficient. Productive. Collaborative. Synergistic.

And achieving that is not easy … but it is possible.

And for each of us it starts with just us … Mono. 

figure_slipping_on_water_custom_sign_14210System behaviour is often rather variable over the short term.  We have ‘good’ days and ‘bad’ days and we weather the storm because we know the sun will shine again soon.

We are resilient and adaptable. And our memories are poor.

So when the short-term variation sits on top of a long-term trend then we do not feel the trend …

… because we are habituating. We do not notice that we are on a slippery slope.


And slippery slopes are more difficult to climb up than to slide down.


In organisational terms the slippery slope is from Calm to Chaos.  Success to Failure.  Competent to Incompetent. Complacent to  Contrite.  Top of the pops to top of the flops!

The primary reason for this is we are all part of a perpetual dynamic between context and content.  We are affected by the context we find ourselves in. We sense it and that influences our understanding, our decisions and our actions. These actions then change our context … nothing is ever the same.

So our hard-won success sows the seeds of its own failure … and unless we realise that then we are doomed to a boom-bust cycle.  To sustain success we must learn to constantly redefine our future and redesign our present.


If we do not then we are consigned to the Slippery Slope … and when we eventually accept that chaos has engulfed us then we may also discover that it may be late.  To leap from chaos to calm is VERY difficult without a deep understanding of how systems work … and if we had that wisdom then we would have avoided the slippery slope in the first place.


The good news is that there is hope … we can learn to climb out of the Swamp of Chaos … and we can develop our capability to scale the slippery slope from  Chaos through Complex, and then to Complicated, and finally back to Calm.  Organised complexity.

It requires effort and it takes time … but it is possible.

business_race__PA_150_wht_3222When we start the process of learning to apply the Science of Improvement in practice we need to start within our circle of influence.

It is just easier, quicker and safer to begin there – and to build our capability, experience and confidence in steps.

And when we get the inevitable ‘amazing’ result it is natural and reasonable for us to want to share the good news with others.  We crossed the finish line first and we want to celebrate.   And that is exactly what we need to do.


We just need to be careful how we do it.

We need to be careful not to unintentionally broadcast an “I am Great (and You are Not)” message – because if we do that we will make further change even more difficult.


Competition can be healthy or unhealthy  … just as scepticism can be.

We want to foster healthy competition … and to do that we have to do something that can feel counter-intuitive … we have to listen to our competitors; and we have to learn from them; and we have to share our discoveries with them.

Eh?


Just picture these two scenarios in your mind’s eye:

Scenario One: The competition is a war. There can only be one winner … the strongest, most daring, most cunning, most ruthless, most feared competitor. So secrecy and ingenuity are needed. Information must be hoarded. Untruths and confusion must be spread.

Scenario Two: The competition is a race. There can only be one winner … the strongest, most resilient, hardest working, fastest learning, most innovative, most admired competitor.  So openness and humility are needed. Information must be shared. Truths and clarity must be spread.

Compare the likely outcomes of the two scenarios.

Which one sounds the more productive, more rewarding and more enjoyable?


So the challenge for the champions of improvement is to appreciate and to practice a different version of the “I’m Great … ” mantra …

I’m Great (And So Are You).

top_surgeon_400_wht_7589All healthcare organisations strive for excellence, which is good, and most achieve mediocrity, which is not so good.

Why is that?

One cause is the design of their model for improvement … the one that is driven by targets, complaints, near misses, serious untoward incidents (SUIs) and never events (which are not never).

A model for improvement that is driven by failure feedback loops can only ever achieve mediocrity, not excellence.

Whaaaaaat?!* That’s rubbish”  I hear you cry … so let us see.


Try this simple test …. just ask any employee in your organisation this question (and start with yourself):

How do you know you are doing a good job?

If the first answer heard is “When no one is complaining” then you have a Mediocrity Design.


When customers have a disappointing experience most do not pen a letter or write an email to complain.  Most just sigh and lower their expectations to avoid future disappointment; many will grumble to family and friends; and only a few (about 5%) will actually complain. They are the really angry extreme.  So they can easily be fobbed off with platitudes … just being earnestly listened to and unreservedly apologised to is usually enough to take the wind out of their sails.  It will escort them back to the silent but disappointed majority whose expectation is being gradually eroded by relentless disappointment. Nothing fundamental needs to change because eventually the complaints dry up, apathy is re-established and chronic mediocrity is assured.


To achieve excellence we need a better answer to the “How do you know you are doing a good job?” question.

We need to be able to say “I know I am doing a good job because this is what a good outcome looks like; this is my essential contribution to achieving that outcome; and here are the measures of the intended outcomes that we are achieving.

In short we need a clear purpose, a defined part in the process that delivers that purpose, and we need an objective feedback loop that tells us that the purpose has been achieved and that our work is worthwhile.

And if  any of those components are missing then we know we have some improvement work to do.

The first step is usually answering the question “What is our purpose?

The second step is using the purpose to design and install the how-are-we-doing feedback loop.

And the  third step is to learn to use the success feedback loop to ensure that we are always working to have a necessary-and-sufficient process that delivers the intended outcome and that we are playing a part in that.

And when we are reliably achieving our purpose, we set ourselves an even better outcome – an even safer, calmer, higher quality and more productive one … and doing that will generate more improvement work to do.  We will not be idle.


That is the essence of Excellence-by-Design.

There comes a point in every improvement journey when it is time to celebrate and share. This is the most rewarding part of the Improvement Science Practitioner (ISP) coaching role so I am going to share a real celebration that happened this week.

The picture shows Chris Jones holding his well-earned ISP-1 Certificate of Competence.  The “Maintaining the Momentum of Medicines”  redesign project is shown on the poster on the left and it is the tangible Proof of Competence. The hard evidence that the science of improvement delivers.

Chris_Jones_Poster_and_Certificate

Behind us are the A3s for one of the Welsh Health Boards;  ABMU in fact.


An A3 is a way of summarising an improvement project very succinctly – the name comes from the size of paper used.  A3 is the biggest size that will go through an A4 fax machine (i.e. folded over) and the A3 discipline is to be concise and clear at the same time.

The three core questions that the A3 answers are:
Q1: What is the issue?
Q2: What would improvement need to look like?
Q3: How would we know that a change is an improvement?

This display board is one of many in the room, each sharing a succinct story of a different improvement journey and collectively a veritable treasure trove of creativity and discovery.

The A3s were of variable quality … and that is OK and is expected … because like all skills it takes practice. Lots of practice. Perfection is not the goal because it is unachievable. Best is not the goal because only one can be best. Progress is the goal because everyone can progress … and so progress is what we share and what we celebrate.


The event was the Fifth Sharing Event in the Welsh Flow Programme that has been running for just over a year and Chris is the first to earn an ISP-1 Certificate … so we all celebrated with him and shared the story.  It is a team achievement – everyone in the room played a part in some way – as did many more who were not in the room on the day.


stick_figure_look_point_on_cliff_anim_8156Improvement is like mountain walking.

After a tough uphill section we reach a level spot where we can rest; catch our breath; take in the view; reflect on our progress and the slips, trips and breakthroughs along the way; perhaps celebrate with drink and nibble of our chocolate ration; and then get up, look up, and square up for the next uphill bit.

New territory for us.  New challenges and new opportunities to learn and to progress and to celebrate and share our improvement stories.

IS_PyramidDeveloping productive improvement capability in an organisation is like building a pyramid in the desert.

It is not easy and it takes time before there is any visible evidence of success.

The height of the pyramid is a measure of the level of improvement complexity that we can take on.

An improvement of a single step in a system would only require a small pyramid.

Improving the whole system will require a much taller one.


But if we rush and attempt to build a sky-scraper on top of the sand then we will not be surprised when it topples over before we have made very much progress.  The Egyptians knew this!

First, we need to dig down and to lay some foundations.  Stable enough and strong enough to support the whole structure.  We will never see the foundations so it is easy to forget them in our rush but they need to be there and they need to be there first.

It is the same when developing improvement science capability  … the foundations are laid first and when enough of that foundation knowledge is in place we can start to build the next layer of the pyramid: the practitioner layer.


It is the the Improvement Science Practitioners (ISPs) who start to generate tangible evidence of progress.  The first success stories help to spur us all on to continue to invest effort, time and money in widening our foundations to be able to build even higher – more layers of capability -until we can realistically take on a system wide improvement challenge.

So sharing the first hard evidence of improvement is an important milestone … it is proof of fitness for purpose … and that news should be shared with those toiling in the hot desert sun and with those watching from the safety of the shade.

So here is a real story of a real improvement pyramid achieving this magical and motivating milestone.


figure_pointing_out_chart_data_150_wht_8005It was the appointed time for the ISP coaching session and both Bob and Leslie were logged on and chatting about their Easter breaks.

<Bob> OK Leslie, I suppose we had better do some actual work, which seems a shame on such a wonderful spring day.

<Leslie> Yes, I suppose so. There is actually something I would like to ask you about because I came across it by accident and it looked very pertinent to flow design … but you have never mentioned it.

<Bob> That sounds interesting. What is it?

<Leslie> V.U.T.

<Bob> Ah ha!  You have stumbled across the Queue Theorists and the Factory Physicists.  So, what was your take on it?

<Leslie> Well it all sounded very impressive. The context is I was having a chat with a colleague who is also getting into the improvement stuff and who had been to a course called “Factory Physics for Managers” – and he came away buzzing about the VUT equation … and claimed that it explained everything!

<Bob> OK. So what did you do next?

<Leslie> I looked it up of course and I have to say the more I read the more confused I got. Maybe I am just a bid dim and not up to understanding this stuff.

<Bob> Well you are certainly not dim so your confusion must be caused by something else. Did your colleague describe how the VUT equation is applied in practice?

<Leslie> Um. No, I do not remember him describing an example – just that it explained why we cannot expect to run resources at 100% utilisation.

<Bob> Well he is correct on that point … though there is a bit more to it than that.  A more accurate statement is “We cannot expect our system to be stable if there is variation and we run flow-resources at 100% utilisation”.

<Leslie> Well that sounds just like the sort of thing we have been talking about, what you call “resilient design”, so what is the problem with the VUT equation?

<Bob> The problem is that it gives an estimate of the average waiting time in a very simple system called a G/G/1 system.

<Leslie> Eh? What is a G/G/1 system?

<Bob> Arrgh … this is the can of queue theory worms that I was hoping to avoid … but as you brought it up let us grasp the nettle.  This is called Kendall’s Notation and it is a short cut notation for describing the system design. The first letter refers to the arrivals or demand and G means a general distribution of arrival times; the second G refers to the size of the jobs or the cycle time and again the distribution is general; and the last number refers to the number of parallel resources pulling from the queue.

<Leslie> OK, so that is a single queue feeding into a single resource … the simplest possible flow system.

<Bob> Yes. But that isn’t the problem.  The problem is that the VUT equation gives an approximation to the average waiting time. It tells us nothing about the variation in the waiting time.

<Leslie> Ah I see. So it tells us nothing about the variation in the size of the queue either … so does not help us plan the required space-capacity to hold the varying queue.

<Bob> Precisely.  There is another problem too.  The ‘U’ term in the VUT equation refers to utilisation of the resource … denoted by the symbol ρ or rho.  The actual term is ρ / (1-ρ) … so what happens when rho approaches one … or in practical terms the average utilisation of the resource approaches 100%?

<Leslie> Um … 1 divided by (1-1) is 1 divided by zero which is … infinity!  The average waiting time becomes infinitely long!

<Bob> Yes, but only if we wait forever – in reality we cannot and anyway – reality is always changing … we live in a dynamic, ever-changing, unstable system called Reality. The VUT equation may be academically appealing but in practice it is almost useless.

<Leslie> Ah ha! Now I see why you never mentioned it. So how do we design for resilience in practice? How do we get a handle on the behaviour of even the G/G/1 system over time?

<Bob> We use an Excel spreadsheet to simulate our G/G/1 system and we find a fit-for-purpose design using an empirical, experimental approach. It is actually quite straightforward and does not require any Queue Theory or VUT equations … just a bit of basic Excel know-how.

<Leslie> Phew!  That sounds more up my street. I would like to see an example.

<Bob> Welcome to the first exercise in ISP-2 (Flow).

FISH_ISP_eggs_jumpingResistance-to-change is an oft quoted excuse for improvement torpor. The implied sub-message is more like “We would love to change but They are resisting“.

Notice the Us-and-Them language.  This is the observable evidence of an “We‘re OK and They’re Not OK” belief.  And in reality it is this unstated belief and the resulting self-justifying behaviour that is an effective barrier to systemic improvement.

This Us-and-Them language generates cultural friction, erodes trust and erects silos that are effective barriers to the flow of information, of innovation and of learning.  And the inevitable reactive solutions to this Us-versus-Them friction create self-amplifying positive feedback loops that ensure the counter-productive behaviour is sustained.

One tangible manifestation are DRATs: Delusional Ratios and Arbitrary Targets.


So when a plausible, rational and well-evidenced candidate for an alternative approach is discovered then it is a reasonable reaction to grab it and to desperately spray the ‘magic pixie dust’ at everything.

This a recipe for disappointment: because there is no such thing as ‘improvement magic pixie dust’.

The more uncomfortable reality is that the ‘magic’ is the result of a long period of investment in learning and the associated hard work in practising and polishing the techniques and tools.

It may look like magic but is isn’t. That is an illusion.

And some self-styled ‘magicians’ choose to keep their hard-won skills secret … because by sharing them know that they will lose their ‘magic powers’ in a flash of ‘blindingly obvious in hindsight’.

And so the chronic cycle of despair-hope-anger-and-disappointment continues.


System-wide improvement in safety, flow, quality and productivity requires that the benefits of synergism overcome the benefits of antagonism.  This requires two changes to the current hope-and-despair paradigm.  Both are necessary and neither are sufficient alone.

1) The ‘wizards’ (i.e. magic folk) share their secrets.
2) The ‘muggles’ (i.e. non-magic folk) invest the time and effort in learning ‘how-to-do-it’.


The transition to this awareness is uncomfortable so it needs to be managed pro-actively … by being open about the risk … and how to mitigate it.

That is what experienced Practitioners of Improvement Science (and ISP) will do. Be open about the challenged ahead.

And those who desperately want the significant and sustained SFQP improvements; and an end to the chronic chaos; and an end to the gaming; and an end to the hope-and-despair cycle …. just need to choose. Choose to invest and learn the ‘how to’ and be part of the future … or choose to be part of the past.


Improvement science is simple … but it is not intuitively obvious … and so it is not easy to learn.

If it were we would be all doing it.

And it is the behaviour of a wise leader of change to set realistic and mature expectations of the challenges that come with a transition to system-wide improvement.

That is demonstrating the OK-OK behaviour needed for synergy to grow.

running_walking_150_wht_8351Improvement is not a continuous process. It has starts and stops, and ups and downs.  Improvement implies change, and that is intentionally disruptive. So the context will determine the progress as much as the change.

A commonly observed behaviour is probably at the root of why the majority of improvements initiatives fail to achieve a significant and sustained improvement.  Trying to run before mastering the skill of walking.


An experienced improvement coach will not throw learners into the deep end and watch them sink or swim.  That is not coaching; it is cruelty.

So the first improvement projects must be doable and done with lots of hands-off support, encouragement and praise for progress.

This has the benefit of developing confidence and capability.

It has a danger of leading to over-confidence though.  Confidence that exceeds capability.

There is a risk that the growing learner will take on a future improvement project that is outside their capability zone.


The danger of doing this is that they fall at the second hurdle and their new confidence can be damaged and even smashed. This can leave the learner feeling less motivated and more fearful than before.


There are a number of ways that an improvement coach can  mitigate this risk:

1. Make the learners aware up front that this is a risk.
2. Scope each project to stretch but not scare.
3. Be prepared to stop and reduce scope if necessary.
4. Set the expectation to consolidate the basics by teaching others.

These are not mutually exclusive options.  Seeing, doing and teaching can happen in parallel and that is actually the most productive way to learn.


As children we learned to walk with confidence before we learned to run … because falling flat on our face hurts both physically and emotionally!

This is just the same.

Dr_Bob_ThumbnailBob and Leslie were already into the dialogue of their regular ISP coaching session when Bob saw an incoming text from one of his other ISPees. It was simply marked: “Very Urgent”.

<Bob> Leslie, I have just received an urgent SMS that I think I need to investigate immediately. Could we put this conversation on ice for 10 minutes and I will call you back?

<Leslie> Of course. I have lots to do. Please do not rush back if it requires more time.

<Bob> Thank you.

Ten minutes later Leslie saw that Bob was phoning and picked up.

<Leslie> Hi Bob.  I hope you were able to sort out the urgent problem. The fact that you are back suggests you did.

<Bob> Hi Leslie.  Thank you for your understanding and patience. The issue was urgent and the root cause is not yet solved, but lessons are being learned.  And this is one you are going to come up against too so it may be an opportune time to explore it.

<Leslie> H’mm. Now you have pricked my curiosity. But you can’t discuss someone else’s problem with me surely!

<Bob> No indeed.  Strict confidentiality is essential.  We can talk about the generic issue though, without disclosing any details.  Do you remember that project you were doing last year where you achieved an initial success and then it all seemed to go wobbly?

<Leslie> Yes. At the time you said that I needed to put that one on the shelf and to press on with other projects. I think the phrase you used was “it needs to stew for a while“.

<Bob> And what happened?

<Leslie> The hard won improvement in performance slipped back and I felt like a failure and started to lose confidence. You said not to blame myself but to learn and  move on.  The lesson was I did not appreciate the difference between circles of control and circles of influence. I was trying to influence others before I had mastered self-control.

<Bob> Yes. There was another factor too but I did not feel it was the time to explore it. Now feels like a better time.

<Leslie> OK … now my curiosity is really fired up.

<Bob> Do you remember last week’s blog about the Improvement Gearbox?

<Leslie> Yes. I really liked the mechanical metaphor.  It resonated with so many things. I have used it several times this week in conversations.

<Bob> Well, there is a close relationship between the level of challenge and the gearbox.  As complexity increases we need to be able to use more of the gears, and to change up and down with ease and according to need.

<Leslie> Change down? I sort of assumed that once you got to fourth gear you stay there.

<Bob> That is true if the terrain is level and everyone is on board the bus with the same destination in mind.  In reality the terrain goes up and down and as we learn we need to stop and let some people get off and take others on board.

<Leslie> So we need to change down gears on the uphill bits, change up gears on the downhill, and go through the whole gear sequence when we deliberately slow to a halt, and then get on our way again.

<Bob> Yes. Well put. The world is changing all the time and the team on board is in dynamic flux. Some arrive, some leave and others stay on the bus but change seats as we move along.  Not all seats suit all people. What is comfortable for one may be painful for another.

<Leslie> So how come the urgent call?

<Bob> A fight had broken out on their bus, the tribes were arguing because the improvements they have made have blown away some of the fog and exposed some deeper cultural cracks. Cracks that had been there all the time but were concealed by the fog of the daily chaos and the smoke of the burning martyrs. They had taken their eye off the road and were heading for a blind bend unaware of what was around the corner.

<Leslie> So your intervention was to shout “Pay attention to the road and make a decision … steer or stop!

<Bob> Yes, that about sums it up.  A co-labor-ation call.

<Leslie> Eh? Dis you just say collaboration in a weird way?

<Bob> Yes. I chopped it up into concepts … “co” means together, “labor” means work and “ation” means action or process.  If they do not learn to co-labor-ate then they will come off the road, crash, and burn. And join the graveyard of improvement train wrecks that litter the verges of the rocky road of change.

<Leslie> Fourth gear stuff?

<Bob> Whole gearbox stuff. All gears between first and fourth because they are all necessary at different times.  Each gear builds on those which go before. There are no good or bad gears just fit-for-current-purpose or not.  Bad driving is ineptitude. Not using the vehicle’s gearbox effectively and efficiently and risking the safety and comfort of the passengers and other road users. Poor leadership is analogous to poor driving. Dangerous.

<Leslie> So an effective leader of change needs to be able to use all the gears competently and to know when to use which and when to change. And in doing so demonstrate what a safe pair of leadership hands looks like and what it can achieve … through collaborative effort.

<Bob> Perfect!  It is time for you to tear up your L plates.

GearboxOne of the most rewarding experiences for an improvement science coach is to sense when an individual or team shift up a gear and start to accelerate up their learning curve.

It is like there is a mental gearbox hidden inside them somewhere.  Before they were thrashing themselves by trying to go too fast in a low gear. Noisy, ineffective, inefficient and at high risk of blowing a gasket!

Then, they discover that there is a higher gear … and that to get to it they have to take a risk … depress the emotional clutch, ease back on the gas, slip into neutral, and trust themselves to find the new groove and … click … into the higher gear, and then ease up the power while letting out the clutch.  And then accelerate up the learning  curve.  More effective, more efficient. More productive. More fun.


Organisations appear to behave in much the same way.

Some scream along in the slow-lane … thrashing their employee engine. The majority chug complacently in the middle-lane of mediocrity. A few accelerate past in the fast-lane to excellence.

And they are all driving exactly the same model of car.

So it is not the car that is making the difference … it is the driving.


Those who have studied organisations have observed five cultural “gears”; and which gear an organisation is in most of the time can be diagnosed by listening to the sound of the engine – the conversations of the employees.

If they are muttering “work sucks” then they are in first gear.  The sense of hopelessness, futility, despair and anger consumes all their emotional fuel. Fortunately this is uncommon.

If we mainly hear “my work sucks” then they are in second gear.  The feeling is of helplessness and apathy and the behaviour is Victim-like.  They believe that they cannot solve their own problems … someone else must do it for them or tell them what to do. They grumble a lot.

If the dominant voice is “I’m great but you lot suck” then we are hearing third gear attitudes. The selfishly competitive behaviour of the individualist achiever. The “keep your cards close to your chest” style of dyadic leadership.  The advocate of “it is OK to screw others to get ahead”. They grumble a lot too – about the apathetic bunch.

And those who have studied organisations suggest that about 80% of healthcare organisations are stuck in first, second or third cultural gear.  And we can tell who they are … the lower 80% of the league tables. The ones clamouring for more … of everything.


So how come so many organisations are so stuck? Unable to find fourth gear?

One cause is the design of their feedback loops. Their learning loops.

If an organisation only uses failure as a feedback loop then it is destined to get no more than mediocrity.  Third gear at best, and usually only second.

Example.
We all feel disappointment when our experience does not live up to our expectation.  But only the most angry of us will actually do something and complain.  Especially when we have no other choice of provider!

Suppose we are commissioners of healthcare services and we are seeing a rising tide of patient and staff complaints. We want to improve the safety and quality of the services that we are paying for; so we draw up a league table using complaints as feedback fodder and we focus on the worst performing providers … threatening them with dire consequences for being in the bottom 20%.  What happens? Fear of failure motivates them to ‘pull up their socks’ and the number of complaints falls.

Job done?

Unfortunately not.

All we have done is to bully those stuck in first or second gear into thrashing their over-burdened employee engine even harder.  We have not helped anyone find their higher gear. We have hit the target, missed the point, and increased the risk of system failure!

So what about those organisations stuck in third gear?

Well they are ticking their performance boxes, meeting our targets, keeping their noses clean.  Some are just below, and some just above the collective mean of barely acceptable mediocrity.

But expectation is changing.

The 20% who have discovered fourth gear are accelerating ahead and are demonstrating what is possible. And they are raising expectation, increasing the variation of service quality … for the better.

And the other 80% are falling further and further behind; thrashing their tired and demoralised staff harder and harder to keep up.  Complaining increasingly that life is unfair and that they need more, time, money and staff engagement. Eventually their executive head gaskets go “pop” and they fall by the wayside.


Finding cultural fourth gear is possible but it is not easy. There are no short cuts.  We have to work our way up the gears and we have to learn when and how to make smooth transitions from first to second, second to third and then third to fourth.

And when we do that the loudest voice we hear is “We are OK“.

We need to learn how to do a smooth cultural hill start on the steep slope from apathy to excellence.

And we need to constantly listen to the sound of our improvement engine; to learn to understand what it is saying; and learn how and when to change to the next cultural gear.

SFQP_enter_circle_middle_15576For a system to be both effective and efficient the parts need to work in synergy. This requires both alignment and collaboration.

Systems that involve people and processes can exhibit complex behaviour. The rules of engagement also change as individuals learn and evolve their beliefs and their behaviours.

The values and the vision should be more fixed. If the goalposts are obscure or oscillate then confusion and chaos is inevitable.


So why is collaborative alignment so difficult to achieve?

One factor has been mentioned. Lack of a common vision and a constant purpose.

Another factor is distrust of others. Our fear of exploitation, bullying, blame, and ridicule.

Distrust is a learned behaviour. Our natural inclination is trust. We have to learn distrust. We do this by copying trust-eroding behaviours that are displayed by our role models. So when leaders display these behaviours then we assume it is OK to behave that way too.  And we dutifully emulate.

The most common trust eroding behaviour is called discounting.  It is a passive-aggressive habit characterised by repeated acts of omission:  Such as not replying to emails, not sharing information, not offering constructive feedback, not asking for other perspectives, and not challenging disrespectful behaviour.


There are many causal factors that lead to distrust … so there is no one-size-fits-all solution to dissolving it.

One factor is ineptitude.

This is the unwillingness to learn and to use available knowledge for improvement.

It is one of the many manifestations of incompetence.  And it is an error of omission.


Whenever we are unable to solve a problem then we must always consider the possibility that we are inept.  We do not tend to do that.  Instead we prefer to jump to the conclusion that there is no solution or that the solution requires someone else doing something different. Not us.

The impossibility hypothesis is easy to disprove.  If anyone has solved the problem, or a very similar one, and if they can provide evidence of what and how then the problem cannot be impossible to solve.

The someone-else’s-fault hypothesis is trickier because proving it requires us to influence others effectively.  And that is not easy.  So we tend to resort to easier but less effective methods … manipulation, blame, bullying and so on.


A useful way to view this dynamic is as a set of four concentric circles – with us at the centre.

The outermost circle is called the ‘Circle of Ignorance‘. The collection of all the things that we do not know we do not know.

Just inside that is the ‘Circle of Concern‘.  These are things we know about but feel completely powerless to change. Such as the fact that the world turns and the sun rises and falls with predictable regularity.

Inside that is the ‘Circle of Influence‘ and it is a broad and continuous band – the further away the less influence we have; the nearer in the more we can do. This is the zone where most of the conflict and chaos arises.

The innermost is the ‘Circle of Control‘.  This is where we can make changes if we so choose to. And this is where change starts and from where it spreads.


SFQP_enter_circle_middle_15576So if we want system-level improvements in safety, flow, quality and productivity (or cost) then we need to align these four circles. Or rather the gaps in them.

We start with the gaps in our circle of control. The things that we believe we cannot do … but when we try … we discover that we can (and always could).

With this new foundation of conscious competence we can start to build new relationships, develop trust and to better influence others in a win-win-win conversation.

And then we can collaborate to address our common concerns – the ones that require coherent effort. We can agree and achieve our common purpose, vision and goals.

And from there we will be able to explore the unknown opportunities that lie beyond. The ones we cannot see yet.

Dr_Bob_Thumbnail[Bing] Bob logged in for the weekly Webex coaching session. Leslie was not yet on line, but joined a few minutes later.

<Leslie> Hi Bob, sorry I am a bit late, I have been grappling with a data analysis problem and did not notice the time.

<Bob> Hi Leslie. Sounds interesting. Would you like to talk about that?

<Leslie> Yes please! It has been driving me nuts!

<Bob> OK. Some context first please.

<Leslie> Right, yes. The context is an improvement-by-design assignment with a primary care team who are looking at ways to reduce the unplanned admissions for elderly patients by 10%.

<Bob> OK. Why 10%?

<Leslie> Because they said that would be an operationally very significant reduction.  Most of their unplanned admissions, and therefore costs for admissions, are in that age group.  They feel that some admissions are avoidable with better primary care support and a 10% reduction would make their investment of time and effort worthwhile.

<Bob> OK. That makes complete sense. Setting a new design specification is OK.  I assume they have some baseline flow data.

<Leslie> Yes. We have historical weekly unplanned admissions data for two years. It looks stable, though rather variable on a week-by-week basis.

<Bob> So has the design change been made?

<Leslie> Yes, over three months ago – so I expected to be able to see something by now but there are no red flags on the XmR chart of weekly admissions. No change.  They are adamant that they are making a difference, particularly in reducing re-admissions.  I do not want to disappoint them by saying that all their hard work has made no difference!

<Bob> OK Leslie. Let us approach this rationally.  What are the possible causes that the weekly admissions chart is not signalling a change?

<Leslie> If there has not been a change in admissions. This could be because they have indeed reduced readmissions but new admissions have gone up and is masking the effect.

<Bob> Yes. That is possible. Any other ideas?

<Leslie> That their intervention has made no difference to re-admissions and their data is erroneous … or worse still … fabricated!

<Bob> Yes. That is possible too. Any other ideas?

<Leslie> Um. No. I cannot think of any.

<Bob> What about the idea that the XmR chart is not showing a change that is actually there?

<Leslie> You mean a false negative? That the sensitivity of the XmR chart is limited? How can that be? I thought these charts will always signal a significant shift.

<Bob> It depends on the degree of shift and the amount of variation. The more variation there is the harder it is to detect a small shift.  In a conventional statistical test we would just use bigger samples, but that does not work with an XmR chart because the run tests are all fixed length. Pre-defined sample sizes.

<Leslie> So that means we can miss small but significant changes and come to the wrong conclusion that our change has had no effect! Isn’t that called a Type 2 error?

<Bob> Yes, it is. And we need to be aware of the limitations of the analysis tool we are using. So, now you know that how might you get around the problem?

<Leslie> One way would be to aggregate the data over a longer time period before plotting on the chart … we know that will reduce the sample variation.

<Bob> Yes. That would work … but what is the downside?

<Leslie> That we have to wait a lot longer to show a change, or not. We do not want that.

<Bob> I agree. So what we do is we use a chart that is much more sensitive to small shifts of the mean.  And that is called a cusum chart. These were not invented until 30 years after Shewhart first described his time-series chart.  To give you an example, do you recall that the work-in-progress chart is much more sensitive to changes in flow than either demand or activity charts?

<Leslie> Yes, and the WIP chart also reacts immediately if either demand or activity change. It is the one I always look at first.

<Bob> That is because a WIP chart is actually a cusum chart. It is the cumulative sum of the difference between demand and activity.

<Leslie> OK! That makes sense. So how do I create and use a cusum chart?

<Bob> I have just emailed you some instructions and a few examples. You can try with your unplanned admissions data. It should only take a few minutes. I will get a cup of tea and a chocolate Hobnob while I wait.

[Five minutes later]

<Leslie> Wow! That is just brilliant!  I can see clearly on the cusum chart when the shifts happened and when I split the XmR chart at those points the underlying changes become clear and measurable. The team did indeed achieve a 10% reduction in admissions just as they claimed they had.  And I checked with a statistical test which confirmed that it is statistically significant.

<Bob> Good work.  Cusum charts take a bit of getting used to and we have be careful about the metric we are plotting and a few other things but it is a useful trick to have up our sleeves for situations like this.

<Leslie> Thanks Bob. I will bear that in mind.  Now I just need to work out how to explain cusum charts to others! I do not want to be accused of using statistical smoke-and-mirrors! I think a golf metaphor may work with the GPs.

magnify_text_anim_16253(1)There is no doubt about it …

… change is not easy.

If it were we would all be doing it …

… all of the time.

So one skill that an effective agent of change demonstrates is persistence.

And also patience. And also reflective learning.


A recent change project demonstrated objective, measurable outcomes which showed that the original design goal was achieved. In budget. It took two years from first contact to final report.

Why two years? Could it have been done quicker?

In principle – ‘Emphatically, yes’.  In practice – ‘Evidently, no’.


With the benefit of hindsight it is always clearer what might have caused the delay.  Maybe the experience-based advice of those guiding the process was discounted.  Maybe the repeated recommendation that an initial investment in learning the basic science of improvement would deliver a quicker return was ignored.  Maybe.


So the reflective learning from the first wave was re-invested in the second wave.

And the second wave delivered a significant and objectively measurable improvement in one year.

And the reflective learning from the second wave was re-invested in the third wave.

And the third wave delivered a significant and objectively measurable improvement in six months.

And the three improvement projects were of comparable complexity.


So what is happening here?

The process of improvement is itself being improved.  Experience and learning are being re-invested.

And two repeating themes emerge ….

Patience is needed to await outcomes and to learn from them.

Persistence is needed to re-examine old paradigms with this new knowledge and new understanding.


Patience and Persistence. And these principles apply as much to the teacher as to the taught.

Troublemaker_vs_RebelSystem-wide, significant, and sustained improvement implies system-wide change.

And system-wide change implies more than 20% of the people commit to action. This is the cultural tipping point.

These critical 20% have a badge … they call themselves rebels … and they are perceived as troublemakers by those who profit most from the status quo.

But troublemakers and rebels are radically different … as shown in the summary by Lois Kelly.


Rebels share a common, future-focussed purpose.  A mission.  They are passionate, optimistic and creative.  They understand synergy and how to release and align the stored emotional energy of both themselves and others.  And most importantly they are value-led and that makes them attractive.  Values such as honesty, integrity and industry are what make leaders together-effective.

SHCR_logoAnd as we speak there is school for rebels in healthcare gaining momentum …  and their programme is current, open to all and free to access. And the change agent development materials are excellent!

Click here to download their study guide.


Converting possibilities into realities is the essence of design … so our merry band of rebels will also need to learn how to convert their positive rhetoric into practical reality. And that is more physics than psychology.

Streams flow because of physics not because of passion.SFQP_Compass

And this is why the science of improvement is important because it is the synthesis of the people dimension and the process dimension – into a system that delivers significant and sustained improvement.

On all dimensions. Safety, Flow, Quality and Productivity.

The lighthouse is our purpose; the whale represents the magnitude of our challenge; the blue sky is the creative thinking we need … to avoid trying to boil the ocean.

And the noisy, greedy, s****y seagulls are the troublemakers who always will plague us.

[Image by Malaika Art].